A greedy randomized adaptive search procedure (GRASP) is an itera-
tive multistart metaheuristic for difficult combinatorial optimization problems. Each
GRASP iteration consists of two phases: a construction phase, in which a feasible
solution is produced, and a local search phase, in which a local optimum in the
neighborhood of the constructed solution is sought. Repeated applications of the con-
struction procedure yields different starting solutions for the local search and the
best overall solution is kept as the result. The GRASP local search applies iterative
improvement until a locally optimal solution is found. During this phase, starting from
the current solution an improving neighbor solution is accepted and considered as the
new current solution. In this paper, we propose a variant of the GRASP framework that
uses a new “nonmonotone” strategy to explore the neighborhood of the current solu-
tion. We formally state the convergence of the nonmonotone local search to a locally
optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP
on three classical hard combinatorial optimization problems: the maximum cut prob-
lem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and
the quadratic assignment problem (QAP).
Dettaglio pubblicazione
2016, MATHEMATICAL PROGRAMMING COMPUTATION, Pages 271-309 (volume: 8)
A nonmonotone GRASP (01a Articolo in rivista)
DE SANTIS Marianna, Festa P, Liuzzi G., Lucidi Stefano, Rinaldi F.
Gruppo di ricerca: Continuous Optimization
keywords